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Abstract 
Decision support systems play an increasingly 

important role in disaster management research. 
Coordination of rescue units during disaster response 
is one of the many areas which may benefit from this 
development. Time pressure, resource shortages, 
different capabilities of rescue units and the 
interdependence of scheduling and allocation tasks 
belong to the key challenges which emergency 
operation centers have to cope with. This paper 
proposes a non-linear optimization model and suggests 
a Monte Carlo-based heuristic solution procedure. We 
computationally benchmark our heuristic with a 
procedure that is applied in practice. Results of our 
study show that the Monte-Carlo heuristic is superior 
to the state-of-the art approach in terms of aggregated 
harm by up to 40%. However, our simulations also 
reveal that the time our heuristic needs to process 
medium-sized instances (100 incidents, 50 rescue 
units) on a PC is a few hours and that more powerful 
real-time computing capabilities are required. 
 
 
1. Introduction  
 

Natural disasters, including earthquakes, 
Tsunamis, floods, hurricanes, and volcanic eruptions, 
have caused tremendous harm and continue to threaten 
millions of humans and various infrastructure 
capabilities each year. For example, according to the 
World Disaster Report of the International Federation 
of Red Cross and Red Crescent Societies [19], the 
megathrust earthquake centered near Sumatra on 
December 26, 2004, generated a tsunami that resulted 
in more than 220,000 deaths, the tropical cyclone 
Nargis on May 2, 2008, lead to almost 140,000 deaths, 
and the Haiti earthquake on January 12, 2010 caused 
more than 220,000 deaths. Over all natural disasters 
within the period 2000-2009, the estimated number of 
people killed amounted to almost 1 million and the 

estimated economic damage caused by natural 
disasters was calculated to almost US$ 1,000 billion, 
respectively. 

Immediate consequences of mid- to large-scale 
natural disasters (e.g. superregional earthquakes) can 
often be characterized by (a) an unknown large number 
of incidents (casualties, damage), (b) multiple, 
differently skilled rescue teams sent from all over the 
world, and (c) severe time constraints due to finite 
rescue times and ever-changing situations. The hidden 
challenge of natural disaster management (NDM) is to 
accept, and ideally to be prepared for, these 
characteristics by satisfying the special needs that are 
imposed by the set of incidents. This study attempts to 
tackle these characteristics by deterministically 
investigating different sets of scenarios each with 
different numbers of incidents and rescue units. 

We use the term “incident” as a proxy for all 
synonyms indicating any immediate event of damage 
or loss caused by a natural disaster or its harmful 
consequences. 

According to the literature [2, 10, 18, 19, 27], 
challenges and activities of natural disaster 
management can be classified along the pre-disaster 
phase (preparedness), the during-disaster phase 
(response), and the post-disaster phase (recovery) 
which can be arranged in a life-cycle [10]. In this 
paper, we focus on the response phase of NDM. 
Effective and efficient coordination efforts during 
emergency response are regarded as one of the critical 
tasks for emergency operations centers (EOCs). This 
fundamental challenge imposed on commanders is 
typically aggravated due to the lack of centralized 
command structure, which results from the 
involvement of many heterogeneous aid organizations, 
such as the Red Cross, technical relief organizations, 
and national guards [25]. In practice, the involvement 
of these organizations with different cultural 
backgrounds, disaster response policies, resources, and 
capabilities entails a distributed planning and 
implementation of response actions. It is not 



astonishing that this organizational patchwork results 
in overall inefficient disaster response operations and 
redundancies in commands. 

Some of the above characteristics in relief 
management efforts were apparent after catastrophes in 
the recent past (e.g. Haiti 2010, Chile 2010, and Japan 
2011). Surprisingly, this sometimes leads to the 
suspicion that the coordination of rescue units during 
these large-scale emergencies is an even bigger 
problem than resource scarcity over all. Interviews 
with the German Federal Agency for Technical Relief 
(THW) approved this. The interviewees also revealed 
another factor when it comes to the coordination of 
resources during emergency response: (human) 
command is often either communicated redundantly or 
counteractively in an improvised and decentralized 
manner, which makes it difficult for rescue units to 
follow the right command and execute it reliably and in 
a timely manner. What is currently missing in practice 
are ways to make command processes in chaotic 
(large-scale) settings even more reliable. This may 
possibly be achieved by avoiding the shortcomings 
from above and enforcing a centralized command 
structure. 

Coordination tasks can be split into operational 
and tactical procedures such as scheduling and the 
allocation of resources. We define both as most critical 
research issues in this paper. This is not only due to the 
underlying information that non-computer based 
coordination is currently done by experienced human 
reasoning. Yet, we question this expertise for large-
scale scenarios when chaos and the pressure on 
individual commanders rise and dozens of incidents are 
confronted to a limited number of rescue teams, 
accounting for the necessity to co-allocate. This 
hypothesis is based on our assumption that computer-
based heuristics may (a) improve human reasoning in 
small-scale scenarios by strictly obeying optimality 
criteria and (b) provide decision support even in more 
complex large-scale settings where human reasoning is 
naturally restricted. 

In this study, we address the coordination problem 
during emergency response and propose a decision 
support system to assist in scheduling and assigning 
rescue units to incidents. We address this objective by 
suggesting a quantitative optimization model and one 
possible solution heuristic.  

In the modeling process, we assume that harm can 
be reduced by minimizing overall completion times of 
incidents, weighted by the severity of incidents. 
Assuming that decision support systems may be 
notably useful in complex settings when human 
apprehension is finite, the solution of the optimization 
model may act not only as a research contribution but 
also as a decision support for decision-makers in 

practice. Disaster-specific characteristics such as 
differences in severity levels between incidents, 
distances, processing times, and different kinds of 
incidents find reflection in the model. We define a 
benchmark heuristic, which mirrors decision reasoning 
by today’s human commanders, to evaluate the quality 
of the performance of the proposed solution heuristic.  

 
The paper is structured as follows: Section 2 

presents requirements, which follow from a literature 
review. These requirements are subsequently 
integrated into the mathematical modeling process in 
section 3. Section 4 introduces the data environment 
and describes the experiments conducted. Section 5 
evaluates the experimental results, which give insights 
into runtimes. The paper closes with a conclusion and 
an outlook into future work. 

 
2. Literature Review and Requirements 
 

As this paper focusses on the response phase of 
NDM, we present a literature review only of this 
phase; a literature overview of the preparedness phase 
and the recovery phase is provided in [31] and [26], for 
example. The methodology of our literature review is 
presented in appendix A. 

Altay and Green III (2006) [4] accentuate a strong 
need for novel theory and methodology by the IS 
community (among others). Open issues include the 
design of organizational and network structures that 
facilitate communications and coordination in disaster 
response, and solutions to logistical problems in all 
phases of NDM. 

It was interesting to see that most strands engage 
in information, communication systems, infrastructure 
[6, 9, 11, 13, 17, 21, 28], and management [1, 7], but 
less in decision support methodology. Some of the 
latter are subsequently introduced. 

One of the many decision support streams we 
found combines methods from applied statistics and 
probability theory with mathematical programming 
approaches to establish novel codes of conduct and 
metrics that assist any commander in those critical 
minutes of the decision-making process [12, 23]. 
Competitive mechanisms (e.g. auctions) and 
cooperative mechanisms (e.g. multi-criteria 
approaches) are suggested. Another research stream 
follows guidelines from computational intelligence 
research [20, 29] to bridge the gap between 
information system design principles and decision 
support process architectures. A third group of 
researchers makes use of empirical investigations of 
past decision-making conclusions to establish 
innovative courses of action [15]. A fourth research 



stream focuses on the decision-making process based 
on decentralized agents, e.g. Fiedrich et al. (2000) [16] 
introduce the usage of optimization modeling. The 
authors above discuss pros and cons of centralized 
versus distributed decision authorities. Distributed 
coordination (assignments and schedules) may remain 
dependent from redundancies and miscommunications 
whereas centralized instances (EOCs) may effectively 
enforce commands if essential infrastructure 
capabilities exist and EOC communication is 
prioritized. On the other hand, centralized command 
may act autonomously within closed operational areas. 
The possibility that several operational areas are 
located right next to each other exists with an 
equivalent number of centralized EOCs. Due to the 
above weaknesses of decentralized coordination, this 
study focusses on centralized command structures.  

The authors of [14] propose an optimization model 
for scheduling volunteers during emergency response 
where the subjects feature time windows. Another 
paper [24] promotes centralized coordination by 
applying a mathematical programming model for 
scheduling distributed rescue units and the assignments 
of incidents to these units. However, the suggested 
model uses time periods of fixed length, and does not 
account for the fact that incidents may have different 
levels of severity. Wex et al. [31] introduce an 
optimization model in a centralized way that matches 
incidents by clearly assigning a single rescue unit per 
incident. Fuzzy optimization is used in [32] in order to 
handle the high level of informational uncertainty that 
occurs during any emergency. All of the above 
centralized optimization models lack the eventuality 
that rescue units need to be assigned to incidents 
collaboratively. 

We hence deduce that the research objective has 
been understudied in former scholarship so far. The 
literature review together with interviews with 
practitioners (THW) led to a distinct set of 
requirements. The artifact, which we propose in the 
next section is being sought to fulfill the following six 
requirements in order to solve the problem of 
efficiently and effectively coordinating rescue units to 
incidents: 

 
1. Timeliness in decision provisioning 
2. Autonomy of centralized decision-makers 
3. (In-)Completeness of centralized information 
4. Heterogeneous rescue units and incidents 
5. Non-preemptiveness 
6. Ability to co-allocate rescue units to an 

incident 
 
 

3. Decision Model 
 

As we are examining modeling approaches of a 
real world scenario, which is both a scheduling and an 
assignment problem, we screened relevant literature on 
the multiple traveling salesman problem (mTSP) and 
from job scheduling theory. [5] proposes modeling 
variants and solution procedures for the mTSP. Yet, 
our scheduling and assignment problem is only related 
to the mTSP in terms of constraints but varies 
significantly regarding the objective function because 
of dependencies between processing sequences. That 
is, it does make a difference for the overall harm to 
process an incident before a less severe incident. 

Our problem is also related to a problem in the 
scheduling literature. If we assume that travel times 
between two incident locations does not depend on the 
particular type of rescue unit that travels, then our 
problem is equivalent to the “parallel-machine 
scheduling problem with unrelated machines, non-
batch sequence-dependent setup times, and a weighted 
sum of completion times as the objective”, classified as 
R/STSD/∑wjCj in the scheduling literature [3]. 
However, this assumption is rarely met in practice so 
that heuristics suggested for this problem [30] are 
inappropriate. Thus, we are bound to alternative 
solution heuristics. 

Our artifact, in terms of a quantitative decision 
model, is modeled as a variant of a (job) scheduling 
model for unrelated, parallel machines (rescue units) 
[8]. The model is non-preemptive (Requirement 5): a 
rescue unit cannot interrupt processing an incident 
(job) before its complete release. We hereby allow for 
parallel processing of one incident by several rescue 
units. An incident is not regarded as being completely 
processed unless all required rescue units have finished 
their work. But, once a rescue unit has finished a job it 
can be assigned to another incident again. Furthermore, 
we do not require specific processing orders (task 
windows). All relevant information (processing times, 
severity of incidents, and travel times) is expected to 
be available in order to make the model work. Even 
though this may seem unrealistic, we assume that we 
can trust reports from on-site agents about incidents 
and status updates of rescue units and regard 
information as complete. In cases where uncertainty 
prevails, we refer to a non-probabilistic, fuzzy 
optimization model presented in [32] even though this 
model is not able to co-allocate rescue units. Using 
probabilistic factors or fuzzy numbers as proxies for 
uncertainty would also imply other challenges, such as 
appropriate parameter settings, applicability, 
interpretation value, and an increase in model 
complexity. 



We thus explicitly introduce our model for 
centralized coordination within clearly defined 
operational areas. In a superregional disaster, we 
assume to implement our model in n-decentralized 
areas given that the autonomous command zones have 
clear boundaries. 

In cases when the disaster itself is very confusing 
and the situation is changing continuously (e.g. updates 
and new incidents are continuously reported), we abort 
the current optimization process and restart it with the 
new parameters (continuous planning property). On the 
other hand, all tasks of rescue units which are already 
processing incidents or sent out to do so cannot be 
aborted if the optimization is started anew once any 
scenario has altered. That is, rescue units can only be 
assigned to new incidents when they become idle. 

Besides the fulfillment of previously established 
requirements, this binary, non-linear optimization 
model pursues two goals: (1) generation of valid 
schedules and assignments for rescue units; (2) 
minimization of the total harm occurring during the 
scene. We assume that harm can reasonably be 
modeled by the sum of completion times over all 
incidents multiplied by weighting factors that account 
for their destructiveness. The model especially 
accounts for co-allocation which appears when 
incidents require various, differently-skilled rescue 
personnel and punishes waiting times that occur when 
incidents are not processed immediately after their 
appearance. 

The objective function seeks to minimize total 
weighted completion times which are necessary to 
process all incidents j. Schedules and assignments are 
generated by two binary decision variables ௜ܺ௝

௞  and  ௜ܻ௝
௞,  

which indicate if an incident i is an immediate 
predecessor of j or a mediate predecessor in the list of 
incidents that are processed by rescue unit k, 
respectively. A weighing factor ݓ௝ is introduced which 
depicts the level of severity of incident j. For the 
parameterization of factors wj, we make use of the 
classification introduced by the U.S. Department of 
Homeland Security (2008) which distinguishes 
between different (terrorism) alert levels. Other 
parameters in use are: processing times ݌௝

௞ which 
denote how much time rescue unit k requires to process 
incident j. Travel times ݏ௜௝

௞  measure the time needed for 
rescue unit k to move from the location of incident i to 
the location of incident j. We introduce two fictitious 
incidents ‘0’ and ‘n+1’ for technical modeling reasons, 
where using incident 0 allows for considering the 
depots (starting locations) of rescue units (݌଴

௞ ൌ
௡ାଵ݌
௞ ൌ 0, ݇ ൌ 1,… ௜ሺ௡ାଵሻݏ	;݉,

௞ ൌ 0, ݅ ൌ 0,… , ݊, ݇ ൌ
1,… ,݉). 

capk,l is a binary parameter with capk,l=1 if and 
only if rescue unit k has capability l (e.g. firemen, 
paramedics). Our modeling also provides for those 
situations in which a rescue unit can have more than 
one capability. The binary parameter cati,l equals 1 if 
and only if the processing of incident i requires 
characteristics of rescue units which have to be 
matched by rescue units’ capabilities. This explicitly 
includes the case that an incident requires the 
capabilities of more than one rescue units. To sum up, 
both relationships (rescue_units[capabilities] and 
incidents[capabilities]) are of type (m:n). 
 

min෍ݓ௝ ൭෍෍൥݌௜
௞

௜ܻ௝
௞ ൅ ൫݌௝

௞ ൅ ௜௝ݏ
௞ ൯	 ௜ܺ௝

௞ ൅ ௜ܻ௝
௞ ൭෍ ௟ܺ௜

௞ݏ௟௜
௞

௡

௟ୀ଴

൱൩

௠

௞ୀଵ

௡

௜ୀ଴

൱

௡

௝ୀଵ

 

s.t. 
෍ ௜ܺ௝

௞ ൑ 1

௡

௜ୀ଴

, ݆ ൌ 1, . . , ݊; ݇ ൌ 1, . . , ݉ (C1) 

෍ ௜ܺ௝
௞ ൑ 1

௡ାଵ

௝ୀଵ

, ݅ ൌ 1, . . , ݊; ݇ ൌ 1, . . , ݉  (C2) 

෍ܺ଴௝
௞ ൌ 1 , ݇ ൌ 1, . . , ݉

௡ାଵ

௝ୀଵ

  (C3) 

෍ ௜ܺሺ௡ାଵሻ
௞ ൌ 1 , ݇ ൌ 1, . . , ݉

௡

௜ୀ଴

  (C4) 

௜ܻ௟
௞ ൅ ௟ܻ௝

௞ െ 1 ൑ ௜ܻ௝
௞ ,
݅ ൌ 0, . . , ݊	; 	݆
ൌ 1, . . , ݊ ൅ 1; ݇ ൌ 1, . . , ݉; ݈
ൌ 1, . . , ݊ 

(C5) 

෍ ௜ܺ௟
௞

௡

௜ୀ଴

ൌ ෍ ௟ܺ௝
௞

௡ାଵ

௝ୀଵ

, ݈ ൌ 1, . . , ݊	; ݇ ൌ 1,… ,݉  (C6) 

௜ܺ௝
௞ ൑ ௜ܻ௝

௞ , ݅ ൌ 0, . . , ݊; ݆ ൌ 1, . . , ݊ ൅ 1; ݇
ൌ 1, . . , ݉ 

(C7) 

௜ܻ௜
௞ ൌ 0, ݅ ൌ 0, . . . , ݊ ൅ 1; ݇ ൌ 1, . . , ݉  (C8) 

෍෍ܿܽ݌௞,௟ ௜ܺ௝
௞

௠

௞ୀଵ

௡ାଵ

௝ୀଵ

൒ ,	௜,௟ݐܽܿ

݅ ൌ 1, . . , ݊; 	݈ ൌ 1, . . , ݀ 

(C9) 

௜ܺ௝
௞ , ௜ܻ௝

௞ ∈ ሼ0,1ሽ , ݅ ൌ 0, . . , ݊; ݆
ൌ 1, . . , ݊ ൅ 1; ݇ ൌ 1, . . , ݉ 

(C10) 

௜,௟ݐܽܿ ∈ ሼ0,1ሽ, ݅ ൌ 1, . . , ݊; ݈ ൌ 1, . . , ݀ (C11) 

௞,௟݌ܽܿ ∈ ሼ0,1ሽ, ݇ ൌ 1, . . , ݉; ݈ ൌ 1, . . , ݀ (C12) 

,௝ݓ ௝݌
௞, ௜௝ݏ

௞ ∈ ܴஹ଴  (C13) 

 



Constraint (C1) ensures the correct alignment of 
immediate predecessor relationships between incidents 
that are processed successively by one specific rescue 
unit k; (C2) addresses the immediate successor 
relationships analogously. Both constraints permit that 
an incident may be processed by more than one rescue 
unit (co-allocation) but prohibit that a rescue unit 
processes more than one incident at the same time. 

Constraints (C3)–(C4) guarantee that rescue units 
start from their depot (fictitious incident ‘0’) and end in 
‘n+1’ (fictitious incident ‘n+1’). (C5) declares that 
predecessor relationships are transitive. Additionally, if 
an immediate predecessor exists, there also has to be a 
successor (C6). (C7) indicates that any immediate 
predecessor is also a general predecessor. (C8), in 
conjunction with (C5) prohibits a reflexive, direct or 
indirect predecessor relationship. (C9) ensures that all 
capabilities required to process incident i are jointly 
covered by the rescue units that process incident i. In 
addition, the model still remains valid if rescue units 
possess more than one capability.  

Trivially, (C10) defines the two binary decision 
variables and implies non-preemption. (C11), (C12), 
and (C13) define all other parameters used. In our 
sense, the so-called factor of destruction wj represents, 
and is apt to model, the severity level of an incident. 
An explanation of how model instances are 
parameterized is presented in the next section.  

 
Each feasible solution of the minimization model 

represents a valid schedule and assignment for all 
rescue units. We illustrate this in the exemplary 
scenario depicted in Figure 1. Two differently-skilled 
rescue teams face (at least) five incidents out of which 
only incident 4 requires the skills of both units (need 
for co-allocation). Incidents ݆ଵ, ݆ଶ ∈  both denote the ܫ
last real incidents which need to be processed by the 
medical and the firefighting unit, respectively, before 
ending the process with fictitious incident n+1.  

In detail, a schedule is proposed for the medical 
unit to process incident 1 before processing incidents 3 
and 4 due to the above optimality criterion (order: 0-1-
3-4...-j1-(n+1)). The fire brigade would adopt an 
identical schedule vice versa (0-2-4-5-…-j2-(n+1)). 
Following such an approach would entail an objective 
value of ‘323’. In contrast, processing incident 3 
immediately before incident 1 by the medical unit 
would result in a worse value of ‘328’. For reasons of 
clarity, incident 4 is regarded as uncovered until not all 
or parts of jobs have been finished, that is, until all 
collaboration units are done processing. 

It is not astonishing that such an illustrative 
example evolves confusing – and thus more complex – 
when more incidents or rescue units are involved, 
especially under the premise that some incidents 

require several capabilities of rescue units and others 
not. 

 
Proof of Complexity.  Our decision model is a 

generalization of the emergency response decision 
model suggested in [32]. The generalization lies in the 
fact that our model additionally allows for various 
capabilities per rescue unit and per incident. Since the 
model suggested in [32] is NP-hard, our model is NP-
hard, too. 

 

 
Figure 1. Example schedule and assignment for 

a medical and a firefighting unit. 
 
4. Computational Evaluation 
 

Due to the computational hardness and related 
computational inefficiency of the decision model, we 
suggest two heuristic approaches for solving model 
instances. We first describe the heuristics, then, we 
present our framework for evaluating the heuristic and 
the technical infrastructure of our simulation. 
 
 
 



4.1. Heuristics 
 

A Monte-Carlo based heuristic is suggested as one 
possibility to solve the above optimization model. 
Monte-Carlo is chosen for several reasons: 

 
1. Our decision model is too complex (NP-hard) 

to be solved (optimally) in reasonable time. 
2. We expect a high number of local optima. 

Deterministic heuristics might get stuck in 
these. 

3. Monte Carlo allows to adapt runtimes by 
altering the number of its iterations 
 

The key idea of generating a feasible solution in 
our Monte Carlo simulation is that incidents are 
iteratively scheduled in two stages: in stage one, an 
incident is assigned randomly to one of the D% most 
appropriate rescue units, where appropriateness is 
determined based on the required capabilities (skills) 
and processing times. The motivation of this procedure 
is based on avoiding both a) assignments of incidents 
to units that require an extremely long time for 
processing (thus, a parameter D in [0; 100] is used), 
and b) myopic assignments of incidents to units that 
require the shortest processing time among all units 
(thus, randomness is included). If there is no rescue 
unit that has the capability to process the incident, the 
algorithm terminates unsuccessfully. 

In stage 2, the chosen incident is inserted into the 
incident queue of the previously selected rescue unit. 
The criterion for determining the position of the new 
incident in the queue is based on a weighted ratio of 
the severity of incident w and the time p it takes the 
selected rescue unit to process this incident. Each 
queue lists its incidents in descending order of (w/p)-
values. The algorithm terminates successfully if 
feasible solutions have been generated. 

The Monte Carlo heuristic requires two input 
parameters: ܦ ∈ ሾ0; 	100ሿ is used for the selection of 
rescue units and the number of iterations which is the 
number of feasible solutions generated. We set D = 90 
and the number of iterations to 500,000 based on 
results of pretests. As initialization, the currently best 
solution value is set to infinity and the currently best 
solution is set to undefined, the current number of 
iterations is set to 0, the cumulated processing times 
are set to 0 for each rescue unit, the current incident 
queues are set to empty for each rescue unit, and we 
define I* as the set of currently unassigned incidents. 
The incidents in I* are now processed iteratively:  

For all categories ݀ ∈  we define K(d) as the set ,ܮ
of all rescue units that are capable of processing 
category d required by incident i. If incident i cannot 
be classified by category d, we set K(d)={} and 

proceed. We rearrange all K(d) in ascending order of 
cumulative processing times. If there are not enough 
rescue units that possess the capabilities to completely 
process incident i, the algorithm terminates 
unsuccessfully. In each K(d), the algorithm randomly 
selects a rescue unit with one of the D% lowest 
cumulative processing times. The purpose of 
introducing this element of randomization is the 
avoidance of greedy assignments of units to incidents 
while contemporaneously avoiding assignments of 
rescue units with extremely high cumulative 
processing times. The cumulative processing time of 
the selected unit is then updated, which concludes 
stage 1. In stage 2, the current incident i is inserted into 
the queue of the selected rescue unit queue(unit) such 
that the queue is ordered in ascending order of values 
(fact_destruct(i)/processing_time(unit, i)), and incident 
i is removed from the set of incidents that still need to 
be assigned. If all incidents have been assigned and all 
required categories have been matched by rescue units’ 
capabilities, then the current schedule is compared with 
the best known schedule, which is contingently 
updated. The algorithm terminates successfully if 
enough feasible solutions have been generated; 
equaling the number of iterations. 

 
As another possible solution method to our model, 

we select a heuristic which can be found in practice, 
usually in a manually operated and non-automated 
decision-making processes. We gained information on 
this heuristic through interviews with the THW. The 
key ideas of the EOC heuristic are that a) incidents are 
assigned to rescue units in descending order of the 
factor of destruction, and b) that each incident j is 
assigned to those rescue units k that are (i) capable of 
processing incident j and (ii) that can start processing 
incident j at the earliest point of time, with assignment 
history and updated travel times being considered. That 
is, the heuristic computes schedules which arise when 
greedily assigning the most severe incident to the 
closest, idle rescue units. An incident is regarded as 
fully processed until all of its categories are completely 
matched by rescue units’ capabilities. 

We do not only assume that this approach can be 
found in practice but we also hypothesize that it can 
serve as a well-defined benchmark. In absence of lower 
bound solutions, the results of both heuristics build the 
basis for the evaluation of our proposed Monte Carlo 
based solution heuristic in the follow-up. 

 
4.2. Experiment Setup 
 

Due to the lack of real-time data we randomly 
generated different mid- to large-scale disaster 
scenarios: for each instance size, defined by the 



number of incidents and rescue units, we generated ten 
instances, which resulted in an overall number of 120 
instances. We excluded more facile settings in which 
rescue units numerically outnumber the number of 
incidents since this setting seems to be unrealistic. 
Table 1 provides an overview of how the instances 
were generated. In all Monte Carlo experiments, we 
used 500,000 iterations. Larger numbers of iterations 
did not result in better solutions in reasonable time.  

 
Table 1. Partly random generation of scenarios. 
Parameter Values/Distribution 

Numbers of 
Rescue Units 

(RU) 
ܭ ∈ ሼ10,20,50ሽ 

Numbers of 
Incidents (Inc.) ܫ ∈ ሼ10,20,50,100,200ሽ 

Replications of 
each scenario 

(RU|Inc.) 

10 

(total: 120 different scenarios) 

Processing 
times ݌௝

௞ µ=20, σ=10 (normal distribution) 

Travel times 
௜௝ݏ
௞  µ=1, σ=0.3 (normal distribution) 

Factors of 
destruction ݓ௝ 

Random Integer ݓ௝ ∈ ሼ1,2,3,4,5ሽ 
(discrete uniform distribution) 

Capabilities of 
rescue units 

௞,௟݌ܽܿ ൌ ൝
1, ݐ݅݊ݑ	݁ݑܿݏ݁ݎ	݂݅ ݇

ݕݐ݈ܾ݅݅ܽ݌ܽܿ	ݏ݁ݏݏ݁ݏݏ݋݌ ݈
0, ݁ݏ݈݁

 

݇ ∈ ,ܭ ݈ ∈ ሼ1, . . ,5ሽ 
l=1; Search and Rescue Unit 

l=2; Medical Unit (Paramedics) 
l=3; Fire Brigade Unit 

l=4; Police Unit / Wardens 
l=5; Special Access Unit 

(discrete uniform distribution) 
Categories of 

incidents 
(capabilities 

required) 

௜,௟ݐܽܿ ൌ ൝
1, ݐ݊݁݀݅ܿ݊݅	݂݅ ݅

ݕݐ݈ܾ݅݅ܽ݌ܽܿ	ݏ݁ݎ݅ݑݍ݁ݎ ݈
0, ݁ݏ݈݁

 

݅ ∈ ,ܫ ݈ ∈ ሼ1, . . ,5ሽ 
Iterations 500,000 

 
We choose the crucial factor time not only to 

quantify our objective value but also to measure 
distances between (depots and) incidents. We have 
such an understanding of large-scale disasters that 
travel times are significantly shorter than times which 
are needed to process incidents (mean ratio: 1:20), yet 
less volatile. We make a sharp distinction between 
well-established skills of rescue units (e.g. medical or 

firefighting). We classify rescue units as “Special 
Access Unit” if it cannot be assigned to any of the 
other classes (see Table 1 and [22]). Unlike in the 
model, we exclude the possibility that rescue units 
possess more than one capability. 

 
The model was evaluated using a two-cored 

machine (2.53GHz, 2GB RAM). We chose this 
elementary environment to get insights into “poor” 
command centers equipped with household computers 
only and a missing link to high-speed infrastructure. 
Realistic results and runtimes may persuade to 
implement our approach in disaster-struck countries 
where sufficient computing facilities are missing. This 
information is essential to consecutively underline our 
research contribution and the fulfillment of 
requirement 1. Both heuristics have been implemented 
in MATLAB. 

 
5. Results 
 

Results of both heuristics are depicted in figure 2. 
The boxplots display most relevant statistical figures 
(means, quartiles, whiskers). Boxplots have been 
sketched for 12 different scenarios depending on the 
number of incidents (Inc.) and the number of rescue 
units (RU). Each box integrates the results of ten 
replications thus calculating to 12x10=120 problem 
instances. The figure itself reads as follows: the scale 
represents the ratio between the two heuristics. Entries 
on the very right-hand side are to be understood that 
we are not able to substantially improve the benchmark 
by our Monte Carlo based heuristic. Data points on the 
very left-hand side can be interpreted as a benefit in 
comparison to the benchmark. 

At a first glance, we notice that no outliers in the 
regular sense exist beyond all whiskers of the boxplots. 
It also seems that variances seem to be reasonably 
small (except for results of the first scenario) since 
boxplots are thin and results stay within a 10% 
interval. Coefficients of variation range between 3% 
(200Inc|50RU) and 10% (20Inc|20RU). This 
observation may induce that we can make reliable 
statements about the performance. Only the 
(10Inc|10RU) scenario has a coefficient of variation of 
22%. 

Apparently, all results of the proposed Monte-
Carlo based heuristic are better than those of the 
benchmark. Some of them tend to excessively improve 
the benchmark especially in more straightforward 
scenarios (up to 57% (left whisker) in the 10Inc|10RU 
setting). The objective value can be improved to up to 
30-40% in a (20Inc|20RU) environment. The 
performance adapts towards the benchmark in more 



complex settings with more incidents evolving. All 
results have been statistically analyzed using a one-
sample t-test to prove the superiority of the proposed 
heuristic. Testing leads to the conclusion that all 
Monte-Carlo based results do outperform the 
benchmark within a 95% level of significance. 

 

 
Figure 2. Results of the Monte Carlo based solution 

heuristic compared to the benchmark heuristic. 
 
Table 2 depicts the runtime behavior of the Monte-

Carlo heuristic. In the smallest scenarios, results were 
generated within 12min, whereas in the most complex 
setting the computational time endured 2.5 hours. 
Results for all scenarios, which have been dealing with 
50 incidents or less, were computed within one hour.  

Yet, we hypothesize that 2.5 hours of waiting are 
too long for the generation of assignments and 
schedules, therefore, we recommend adapting the 
number of iterations to get results faster without losing 

too much of its benefits. Cutting the number of 
iterations to 250,000 reduces the runtime of the 
(200Inc|50RU) scenario to approximately one and a 
half hours, whereas the mean ratio of the results 
weakens by only 1%.  

Requirement 1 can be fulfilled even more a) by 
further reducing the number of Monte Carlo iterations 
or b) by increasing computation power. We assume 
that high-performance processors or advanced IT 
infrastructure cause runtimes to diminish to a minimum 
even in very complex scenarios. If one makes use of 
this adaptability of the Monte-Carlo based heuristic in 
complex settings, then requirement 1 can be fulfilled. 

 
Table 2. Mean runtimes of the Monte-Carlo based 

solution heuristic (in seconds). 

t[sec] 
10 

Inc. 
20 

Inc. 
50 

Inc. 
100 
Inc. 

200 
Inc. 

10 RU 697 934 1,993 4,170 8,987 

20 RU  1,068 2,142 4,037 8,574 

50 RU   2,526 4,819 9,771 

 
6. Conclusion 
 

The management of emergency response is 
recognized as a key issue in literature and in disaster 
management practice. Coordination issues in particular 
have been lacking attention so far. 

We proposed a novel quantitative decision support 
model for the allocation and scheduling of rescue units 
based on requirements identified in the related 
literature and in interviews. Due to the NP-hardness, 
we drew on a Monte Carlo based solution heuristic and 
computationally demonstrated its benefits. The results 
show that there is a large potential to improve a 
currently deployed (greedy) procedure. Yet, the 
research invites for future work, such as the 
introduction of a) time windows, b) pre-emption, or c) 
the employment with real-time data. For example, time 
windows are of particular importance when humans are 
buried alive and need to be saved. Pre-emptive 
approaches become necessary when rescue units need 
to improvise or act more autonomously or jobs need to 
be switched quickly and often. 

Another research stream may enhance the 
applicability of our optimization model, such as the 
integration of fatigue characteristics of rescue units. 
Fatigue features become apparent when rescue forces 
lose some of their performance abilities caused by the 
duration of their deployment and the constant pressure 
to save lives over time. Yet, addressing these issues 
would cause additional constraints to the model. 



Appendix A: Literature Search Procedure 
 
We scanned the literature in the fields of NDM and 
IS/computer science. Regarding the former field, our 
search procedure included the following steps: 
 We performed a title search in technological- and 

management-oriented literature databases, namely 
Business Premier Source, EconLit, and ACM 
Digital Library (the search string was ”(response 
OR system OR management) AND “disaster”). 

 We searched the proceedings of the “International 
Conference on Information Systems for Crisis 
Response and Management” and the table of 
contents of the journals “International Journal of 
Emergency Management”, “International Journal 
of Emergency Response”, and “Disaster 
Prevention and Management” (since 2000). 

 
Regarding literature on information systems and 
computer science-related disaster management 
research, our search procedure included the following 
steps: 
 We performed a title search in technological- and 

management-oriented literature databases, namely 
ACM Digital Library, Business Premier Source, 
EconLit, MLA (the search string was 
”information AND disaster”). We also searched 
the literature database “Web of Science” using 
the same search string. Due to an unmanageable 
number of results we refined the search by using 
the following search string: “disaster AND 
(management OR system OR information) AND 
design”. 

 We scanned the table of contents of premier IS 
outlets, including “European Journal of 
Information Systems”, “Information Systems 
Journal”, “Information Systems Research”, 
“Journal of the AIS”, “Management Information 
Systems Quarterly”, and “Journal of the 
Management of Information Systems”. 

 We searched the proceedings of the “International 
Conference on Information Systems for Crisis 
Response and Management” and the table of 
contents of the journals “International Journal of 
Emergency Management”, “International Journal 
of Emergency Response”, and “Disaster 
Prevention and Management” (since 2000). 
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